HISSAN CENTRAL EXAMINATION - 2080 (2024)

Grade: XII
F.M.: 75

Time : 3 hrs

COM. MATHEMATICS (0081 M2)

Candidates are required to give their answers in their own words as far as practicable.
Attempt ALL Questions.

GROUP A

$[11 \times 1=11]$
Rewrite the correct options of each questions in your answer sheet.

1. The $(k+1)^{\text {th }}$ the term of $(\mathrm{x}+\mathrm{y})^{\mathrm{n}}$ is ..
a) $\binom{n}{k} x^{n-k} y^{n-k}$
b) $\binom{n}{k} \mathrm{x}^{\mathrm{k}} \mathrm{y}^{\mathrm{k}}$
c) $\binom{n}{k}$
d) $\binom{n}{k} \mathrm{x}^{\mathrm{n}-\mathrm{k}} \mathrm{y}^{\mathrm{k}}$
2. Which one of the following is the Euler's form of 2 i ?
a) $e^{\frac{i \pi}{2}}$
b) $2 e^{\frac{i \pi}{3}}$
c) $2 e^{\frac{i \pi}{2}}$
d) $2 e^{\frac{-i \pi}{2}}$
3. If $b \cos B=c \cos C$ in a triangle $A B C$ then the triangle is.
a) right angled
b) equiangular
c) acute angle
d) obtuse angle
4. In a conic section has equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ then the eccentricity is
a) $\sqrt{1-\frac{b^{2}}{a^{2}}}$
b) $\sqrt{1-\frac{a^{2}}{b^{2}}}$
c) $\sqrt{1+\frac{b^{2}}{a^{2}}}$
d) $\sqrt{1+\frac{a^{2}}{b^{2}}}$
5. Let $\vec{p} \times \vec{q}=\vec{r} \times \vec{s}$ and $\vec{p} \times \vec{r}=\vec{q} \times \vec{s}$. Which one of the following is parallel to $(\vec{q}-\vec{r})$?
a) $(\vec{p}-\vec{q})$
b) $(\vec{p}-\vec{r})$
c) $(\vec{p}-\vec{s})$
d) $(\vec{r}-\vec{s})$
6. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.32$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.5$, which one of the following is $\mathrm{P}(\mathrm{A} / \mathrm{B})$?
a) $\frac{2}{5}$
b) $\frac{8}{25}$
c) $\frac{3}{8}$
d) $\frac{5}{8}$
7. What is the derivation of $\operatorname{cosech}^{-1} x$?
a) $\frac{1}{x \sqrt{x^{2}+1}}$
b) $-\frac{x}{\sqrt{x^{2}+1}}$
c) $-\frac{1}{x \sqrt{x^{2}+1}}$
d) $\frac{1}{x \sqrt{x^{2}-1}}$
8. Which one of following is equal to $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$?
a) 0
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) $\frac{1}{6}$
9. Which one of following is the angle made by the tangent to curve $y(x-2)-(x-3)=0$ at the point on x axis ?
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{3 \pi}{2}$
d) $\frac{5 \pi}{6}$
10. Which one of following order of the differential equation $\frac{d^{3} y}{d x^{3}}-\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{4} ?$
a) 1
b) 2
c) 3
d) 4
11. The system of linear equations $2 x+3 y=15$ and $4 x+6 y=30$ has...
a) No solution
b) Infinitely many solutions
c) One solution
d) More than one solutions but finite

OR

An automobile of mass of 1000 kg is brought to rest by applying a breaking force of 2500 N . Which one of the following retardation.
a) $2.5 \mathrm{~cm} / \mathrm{s}^{2} \mathrm{~b}$)
$2.5 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.5 \mathrm{~m} / \mathrm{s}$
d) $-2.5 \mathrm{~m} / \mathrm{s}^{2}$

GROUP B

[$8 \times 5=40]$
12. $(a+x)^{n}=C(n, 0) a^{n}+C(n, 1) a^{n-1} x+\ldots+C(n, n-1) a^{n-1}+C(n, n) x^{n}$
a) How many terms are there in expansion?
b) Write the general term of the expansion.
c) Write the binomial coefficients.
d) If $\mathrm{a}=1$, write the above binomial in the expansion form.
e) when n is even in above expansion, write its middle term.
13. a) If $\mathrm{Z}=\cos \theta+\mathrm{i} \sin \theta$, find the value of $\mathrm{Z}^{\mathrm{n}}+\mathrm{Z}^{-\mathrm{n}}$
b) Solve the following system of equation by using matrix method
$5 \mathrm{x}+3 \mathrm{y}=27,3 \mathrm{x}-2 \mathrm{z}=-1, \mathrm{y}+2 \mathrm{z}=14$
14. a) If $\left(a^{2}+b^{2}\right) \sin (A-B)=\left(a^{2}-b^{2}\right) . \sin (A+B)$, prove that the triangle $A B C$ is right angled isosceles triangle.
b) Find the equation of the parabola whose focus is at the point $(2,3)$ and the directrix is $3 x+4 y-5=0$.
15. a) A helicopter is flying horizontally at height of 7 km with a velocity of $360 \mathrm{~km} / \mathrm{hr}$. Find the rate at which it is receding from fixed point on the ground which it passed over 4 minutes ago.
b) If $|\vec{p}+\vec{q}|=|\vec{p}-\vec{q}|$,then prove that \vec{p} is perpendicular to \vec{q}.
16. a) Write the integral of $\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$.
b) Write a differential equation in a linear form.
c) Write any three in-determinante form of function. [1]
d) What does $\frac{\Delta y}{\Delta x}$ represent?
e) Reduce the expression $\frac{3}{(x+4)(x-2)}$ into partial fraction.
17. Raw materials used in production of a synthetic fiver is stored in a place that has no humidity control measurement of the humidity (relative) and the moisture content of samples of the raw materials (both in percentages) of 7 days yielded the following results.

Humidity (x)	46	53	37	42	34	29	60
Moisture content (y)	12	14	11	13	10	8	17

a) Find the coefficient correlation
b) Predict the moisture content when the relative humidity is 40 percent.
18. a) Evaluate $\int \frac{\sin A}{\sqrt{1+\sin A}} d A$
b) Solve $: \frac{d y}{d x}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}+\mathrm{x}^{3} \cdot \mathrm{e}^{-y}$
19. a) A Particle is projected with a velocity u. If the greatest height attained by the particle be H, prove that the range R on the horizontal plane through the point of projection is
$\mathrm{R}=4 \sqrt{H\left(\frac{u^{2}}{2 g}-H\right)}$
b) O is the orthocenter of triangle PQR . Forces $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ acting along $\mathrm{OP}, \mathrm{OQ}, \mathrm{OR}$ are in equilibrium. Prove $\frac{x}{Q R}=\frac{Y}{P R}=\frac{Z}{P Q}$

OR

a. Solve the following system of equations by Gauss-Seidel method $x-4 y+6=0,5 x-y=27$
b. Using simplex method to maximize $\mathrm{Z}=12 \mathrm{x}+17 \mathrm{y}$ subject to $2 \mathrm{x}+3 \mathrm{y} \leq 21,5 x+7 y \leq 50$ and $\mathrm{x}, \mathrm{y} \geq 0$

GROUP C
$[3 \times 8=24]$
20. a) From 8 gentlemen and 6 ladies a committee of 6 is to be formed. In how men ways can this be done so as to include at least 5 gentlemen.
b) Using principle of mathematical induction, show that :
$1^{2}+2^{2}+3^{2}+\ldots, \ldots+\mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$
c) Apply De-Moivre's theorem to compute $(1+i)^{10}$
21. a) Find the coordinate of the vertices and the foci of the ellipse $4 x^{2}+9 y^{2}-16 x-18 y-11=0$
b) If $\mathrm{A}=30^{\circ}, \mathrm{B}=45^{\circ}$ and $\mathrm{a}=6 \sqrt{2}$ of a triangle ABC , find b and c .
c) Prove by vector method that: $\operatorname{Sin}(A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B[3]$
22. a) Write uses of L-Hosital's rule with an example.
b) Give an example of linear differential equation, homogenous differential equation and standard integral each.
c) Define improper faction. Find the derivative of $\operatorname{Arc} \sinh (\cosh x) .[1+2]$

