HISSAN CENTRAL EXAMINATION - 2080 (2024)

Grade: XII
F.M.: 75

Time : 3 hrs

COM. MATHEMATICS (0081 D2)

Candidates are required to give their answers in their own words as far as practicable.
Attempt ALL Questions.

GROUP A

$[11 \times 1=11]$

Rewrite the correct options of each questions in your answer sheet.

1. How many ways can 3 geometric boxes can be distributed among 4 children where each children eligible for all geometric boxes?
A) 7
B) 12
C)64
D) 81
2. Which one of the following is the Euler's form of 1-i ?
A) $\sqrt{2} e^{\frac{i 7 \pi}{4}}$
B) $2 e^{\frac{i 7 \pi}{4}}$
C) $\sqrt{2} e^{\frac{-i 7 \pi}{4}}$
D) $2 e^{\frac{-i 7 \pi}{4}}$
3. If $\frac{\cos C}{2}=\sin \mathrm{A} \cdot \cos \mathrm{B}$ in a triangle ABC then the triangle has.
A) $a=b=c$
B) $a=b$
C) $\mathrm{b}=\mathrm{c}$
D) $\mathrm{c}=\mathrm{a}$
4. In a conic section has equation $\frac{(x+h)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{~b}>\mathrm{a}$ then the foci is
A) $(\mathrm{h}, \pm b e)$
B) $(\mathrm{h} \pm a e, 0)$
C) $(-\mathrm{h} \pm a e, 0)$
D) $(-\mathrm{h}, \pm b e)$
5. Let $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$. Which one of the following is parallel to $(\vec{b}-\vec{c})$?
A) $(\vec{a}-\vec{b})$
B) $(\vec{a}-\vec{c})$
C) $(\vec{a}-\vec{d})$
D) $(\vec{c}-\vec{d})$
6. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.32$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.5$, which one of the following is $\mathrm{P}(\mathrm{A} / \mathrm{B})$?
A) $\frac{2}{5}$
B) $\frac{5}{8}$
C) $\frac{3}{8}$
D) $\frac{8}{25}$
7. What is the value of $\int \frac{1}{a^{2}-x^{2}} d x$?
A) $\frac{1}{a} \log \frac{x+a}{a-x}+$ C
B) $\frac{1}{2 a} \log \frac{x+a}{x-a}+\mathrm{C}$
C) $\frac{1}{a} \log \frac{x-a}{a+x}+$ C
D) $\frac{1}{2 a} \log \frac{x+a}{a-x}+C$
8. Which one of the following is equal to $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$?
A) 0
B) 1
C) 2
D) 3
9. Which one of the following is the equation tangent to curve $\mathrm{y}=(\mathrm{x}-1)(\mathrm{x}-2)$ at the point on x axis ?
A) $2 x+y=0$
B) $x+y=1$
C) $x-y=1$
D) $x+y=2$
10. Which one of the following is order of the differential equation $\frac{d^{4} y}{d x^{4}}-\left(\frac{d^{5} y}{d x^{5}}\right)^{3}+\left(\frac{d y}{d x}\right)^{5} ?$
A) 1
B) 3
C) $4 \quad$ D) 5
11. In a Gauss elimination method is original equations are transformed by using
A) Row operation
B) subset operation
C) column operation
D) Mathematical operation

OR,
What is the maximum horizontal range of a particle thrown with the velocity of $10 \mathrm{~m} / \mathrm{s} ?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A) 8 m
B) 10 m
C) 15 m
D) 20 m

GROUP B

[$8 \times 5=40]$
12. (a) What is the sum of first n natural number?
(b) Write the genera 1 term of the expansion $(a+x)^{\mathrm{n}}$. [1]
(c) Write two property cube root of unity. [1]
(d) What is the magnitude of complex number $\mathrm{Z}=e^{-i \theta}$?
(e) Define permutation and combination.
13. (a) Find the sum to n terms of the series: $2.3+3.4+4.5+\ldots, \ldots$ [2]
(b) Solve the following system of equation by using matrix method [3] $2 x+y+3 z=19,3 x-2 z=-2,3 y+2 z=17$
14. a) If $\mathrm{a}^{4}+\mathrm{b}^{4}+\mathrm{c}^{4}=2 \mathrm{c}^{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$, prove angle C is 45^{0} or 135^{0} in triangle ABC
b) Find the equation of the tangent to the circle $x^{2}+y^{2}=25$ drawn through the point $(13,0)$
15. a) From a cylindrical drum containing milk and kept vertical, the milk is leaking so that level of the milk is decreasing at the rate of $1.5 \mathrm{~cm} / \mathrm{min}$. If the radius and the height of the drum is 21 cm and 49 cm respectively, find the rate at which the volume of the milk is decreasing. ($\pi=\frac{22}{7}$)
b) Find the value of $\left(a^{\vec{~}} . b^{\overrightarrow{ }}\right)^{2}+(\vec{a} \times \vec{b})^{2}$ in term of a and b.

16 a) Write the integral of $\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x$.
b) Write a differential equation in a linear form.
c) Write any three indeterminante form of function.
d) What does $\frac{d y}{d x}$ represent?
e) Reduce the expression $\frac{2}{(x+1)(x-1)}$ into partial fraction.
17. Raw materials used in production of a synthetic fiver is stored in a place that has no humidity control measurement of the humidity (relative) and the moisture content of samples of the raw materials (both in percentages) of 7 days yielded the following results.

Humidity	56	43	57	32	45	39	55
Moisture content	13	17	11	18	15	23	27

a) Find the coefficient correlation
b) Predict the moisture content when the relative humidity is 60 percent.
18. a) Find the derivative of $\left(\cosh ^{-1} x\right)^{x}$
b) Solve : $\frac{d y}{d x}=\frac{y+1}{x+y+1}$
19. a. If the velocity of particle when at its greatest height is $\sqrt{\frac{2}{5}}$ of its velocity when at half its greatest height, find the angle of projection.
b. Two forces X and Y acting parallel to the length and base of an inclined plane respectively, would each of them singly support a weight M on the plane ; prove that $\frac{1}{X^{2}}=\frac{1}{Y^{2}}+\frac{1}{M^{2}}$
a. Solve the following system of equations by Gauss-Seidel method $x-4 y+6=0,5 x-y=27$
b. Using simplex method to maximize $\mathrm{P}(\mathrm{x}, \mathrm{y})=3 \mathrm{x}+5 \mathrm{y}$ subject to $x+2 y \leq 40 ; 2 x+y \leq 50, x, y \geq 0$.

GROUP C

$[3 \times 8=24]$
20. a) From 10 gentlemen and 8 ladies a committee of 7 is to be formed. In how men ways can this be done so as to include at least 4 ladies?
b) Using principle of mathematical induction, show that:

$$
\begin{equation*}
1^{2}+3^{2}+5^{2}+\ldots, \ldots+(2 n-1)^{2}=\frac{n(2 n+1)(2 n-1)}{3} \tag{3}
\end{equation*}
$$

c) Apply De-Moivre's theorem to compute $(1-i)^{5}$
21. a) Find the equation of tangent to the parabola $x^{2}=4$ ay at a point $\left(x_{1}, y_{1}\right)$ on the parabola.
b) If $A=45^{\circ}, B=60^{\circ}$,show that a:c $=2: \sqrt{3}+1$
c) Prove, any triangle, by vector method that $\frac{\sin A}{a}=\frac{\sin C}{c}=\frac{\sin B}{b}$
22. a) Find the point on the curve $y=3 x^{2}+4 x-5$ where the tangent is parallel to the $16 x+2 y=3$.
b) Give an example of exact differential equation, homogenous differential equation and standard integral each.
c) Define L hospital rule . Find the derivative of $\operatorname{Arc} \cosh (\sinh x)$. [1+2]

THE END

