HISSAN CENTRAL EXAMINATION - 2079 (2022)

Class: XI	PHYSICS (1011 SET A)	
F.M : 75	(11 Marks Obj+ 64 Marks Sub)	Time: 3hrs

GROUP A

Multiple Choice Questions: Attempts all questions. Time : 25 Minutes

 $[11 \times 1 = 11]$

Tick the correct answer.

- In the relation F= a x + b t², where F is force, x is distance and t is time. The dimensions of ^b/_a is
 a. [LT⁻²] b. [LT⁻¹] c. [LT⁻³] d. [L²T⁻²]
- 3. The dot product of two vectors is equal to $\frac{1}{\sqrt{3}}$ times the magnitude of the cross product. The angle between them is a. 90° b. 60° c. 50° d. 30°
- 3. A body is dropped from the top of the tower; during its last second, it
 - covers 25 m. the height of the tower is a. 55m b. 45m c. 40m d. 35m
- 4. Figure shows a force-displacement graph of a moving body. The work done by the body is
 a. 42.5 J b. 40J c. 45J d. 36J
- 5. If the radius of the earth suddenly decreases by 10% of its present value keeping the mass of the earth remaining the same, the value of acceleration due to gravity will
 - a. Remain unchanged
 - b. Become 8.82 m/s^2
 - c. Increases by 19%
 - d. Increases about 23%
- 6. The resistance of the conductor calculated from the graph is

a.	1Ω	b. 4Ω
c.	3Ω	d. 5Ω

- 7. A boy walks towards a stationary plane mirror at a speed of 4 m/s. What is the relative speed of approach of the boy and his image?
 - a. Zero
 - b. 4 m/s
 - c. 8 m/s
 - d. 1.44 m/s
- 8. How long will the light take to travel a distance of 500m in water? The Refractive index for water is 1.33, and the velocity of light in a vacuum is 3×10^8 m/s.
 - a. 2.21×10^{-6} sec.
 - b. 3.21×10^{-6} sec.
 - c. 1.21×10^{-6} sec.
 - d. 4.216×10^{-6} sec.
- 9. The focal length of a concave lens 20 cm. Its power is
 - a. + 20 D
 - b. -5 D
 - $c. \quad -\,20 \; D$
 - d. $+\frac{1}{2}D$
- 10. The figure represents the totally reflecting prism. In this case, the angle of deviation is
 - a. 90^{0} b. 120^{0} c. 0^{0} d. 180^{0}
- 11. How do we define the mass number?
 - a. Number of protons in a nucleus
 - b. The complement of the atomic number
 - c. The number of protons plus the number of neutrons in the nucleus
 - d. Number of neutrons in a nucleus

V-1Graph 16 V112 0.4 0.01 0.2 0.3 0.4 0.5 0.6

Current (A)-

HISSAN CENTRAL EXAMINATION - 2079 (2022)

Class: XI	PHYSICS (1011 SET A)	
F.M : 75	(11 Marks Obj+ 64 Marks Sub)	Time: 3hrs

Attempt all questions.

GROUP B

 $[8 \times 5 = 40]$

[1]

[1]

Short Answers Question:

- 1. a. What is linear momentum? How impulse is related to change in linear momentum? [2]
 - b. A student claim that he can produce linear momentum in carrom men with the help of a striker. Is his claim true? Explain. [2]

c. State the principle of conservation of linear momentum.

OR

A man filled helium gas in a balloon. When he released the balloon by tightening its mouth, he found that the balloon moved in an upward direction.

- a. The balloon gains potential energy and kinetic energy. Does it violets the law of conservation of energy? Explain. [2]
- b. State the principle of conservation of energy.
- c. A pump fills a tank of capacity 300 m³ in 5 hours. The tank is situated at a height of 20 m from the water level. If the efficiency of the pump is 65%, calculate the power of the engine which runs the pump (g =10m s⁻²). [2]
- 2. a. Define Specific heat capacity? Why steel bowls are painted with copper in base. [2]
 - b. Which method and principle is used to determine the specific heat the capacity of solid. [2]
 - c. Draw the diagram to determine the specific heat capacity of the solid. [1]
- 3. Figure shows the temperature heat energy graph for water. Answer the following question using a graph.
 - a. Indicate the position of fusion and vaporization in the graph. [1]

- b. Why the slope of line RS is less than the slope of line PQ? Explain. [2]
- c. Define the term latent heat of fusion and latent heat of vaporization. [2]

4. a. What is an ideal gas?

[1]

[1]

- c. A room contains oxygen and hydrogen molecules in the ratio of 3:1. The temperature of the room is 27°C. The molar mass of oxygen is 32, and hydrogen is 2. The value of gas constant R is 8.31 J mol⁻¹K⁻¹. Calculate rms speed of oxygen and hydrogen molecules. [2]
- 5. a. Define lateral shift.

b. Derive the ideal gas equation.

- b. What will be the lateral shift when the angle of incidence is 90^{0} ? [1]
- c. ABCD is a plane glass cube. A horizontal beam of light enters the face AB at grazing incidence. Show that the angle θ which any ray emerging from BC would make with the normal to BE is given by $\sin\theta = \cot C$ where c is the critical angle. [3]

OR

- a. What happens to the focal length of the lens if it is dipped in water? [1]
- b. Discuss the formula for the focal length of two thin lenses in contact.
- c. For a 60° glass prism, the angle of minimum deviation is 37.2°.
 Calculate its refractive index.
- 6. a. What is drift velocity? [1]b. Discuss the mechanism of metallic conduction and find the expression
 - of drift velocity. [3]
 - c. Drift velocity in 1mm copper wire is 10⁻³m/s, but the speed of electricity is so fast. How will you convince a confused student?
- 7. a. What is electric potential?
 - b. What distance must an electron move in a uniform potential gradient 200 V/cm in order to gain K.E. of 3.2×10^{-18} J? [Given that $e = 1.6 \times 10^{-19}$ C m_e = 9.1×10^{-31} kg.] [3]
 - c. Why two equipotential surfaces never intersect each other? [1]
- 8. a. What is capacitor? Give its two applications.
 - b. In the given capacitor circuit applied potential between ab is 220V.

ii) Find the charge stored.

i) What is the equivalent capacitance of the network between a and b? Given, $C_1 = C_5 = 3\mu F$ and $C_2 = C_3 = C_4 = 4\mu F$. [2]

 C_1

[1]

[1]

[2]

 C_3

GROUP C

[1]

Give long answers to the following questions. $[3 \times 8 = 24]$

- 9. a. Define Projectile motion with an example. [1]
 b. A projectile is projected from the ground. Show that its path is a parabolic. [2]
 c. At what point velocity and acceleration of the projectile are
 - perpendicular? Draw the diagram to show the angle. [2]

d. A package is released from a helicopter flying horizontally at a constant velocity 40m/s. If the helicopter is flying at a height 100m from the ground

ii) The satellite is 35950 km above the earth's surface. Calculate the time period of satellite.

 $\begin{bmatrix} G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^{-2}, \text{ } R = 6.4 \times 10^6 \text{m}, \\ \text{Me} = 6 \times 10^{24} \text{ kg} \end{bmatrix}$ [2]

- iii) The satellite has negative energy. What is its meaning? [2]
- 10. a. Define the terms stress and strain.

[2]

b. Figure shows the Stress – strain curve for ductile materials. Label the name of points A, D and F in the figure. [2]

Stress - Strain Curve for Ductile materials

c. In which portion of graph Hooke's law is followed.

d. The rubber cord of a catapult has a cross-sectional area $1mm^2$ and total unstretched length 10.00cm. It is stretched to 12.00cm and released to project a missile of mass 4.00 gm. Calculate the velocity of projection. [Young's modulus of rubber =5 × $10^8 Nm^{-2}$] [3]

[1]

- a. Explain how Rutherford's α-scattering experiment suggested that the nucleus of an atom is very small, very dense and positively charged.[3]
 - b. What are binding energy and packing fraction? [2]
 - c. Find mass defect and binding energy of the helium nucleus. Mass of $_2\text{He}^4$ = 4.0015 a.m.u., m_p = 1.00727 a.m.u. and m_n = 1.00866 a.m.u. [1amu = 931MeV] [3]

THE END