HISSAN CENTRAL EXAMINATION - 2079 (2022)

Grade: XII

F.M.: 75

Time : 3 hrs

COM. MATHEMATICS (0081 A)

Candidates are required to give their answers in their own words as far as practicable.

Attempt ALL Questions.

GROUP A $[11 \times 1 = 11]$

Rewrite the correct option in your answer sheet.

1. The number $(-1)^{1/3}$ is not equal to

a) -1 b) $(-\sqrt{3} + i)/(2i)$ c) $(\sqrt{3} + i)/(2i)$ d) $(\sqrt{3} - i)/(2i)$

- 2. If the one root of the equation $4x^2 2x + p 4 = 0$ is the reciprocal of other, then the value of *p* is
 - a) 8 b) 8 c) 4 d) 4
- 3. The general value of q satisfying the equation $2\sin^2 q 3\sin q 2 = 0$, is
 - a) $n\pi + (-1)^n \pi/6$ b) $n\pi + (-1)^n \pi/3$
 - c) $n\pi + (-1)^n 5\pi/6$ d) $n\pi + (-1)^n 7\pi/6$
- 4. The solution of the trigonometric equation $\tan x + 1=2$ on the interval $[0,2\pi)$ is
 - a) 0, π b) $3\pi/4$, $7\pi/4$ c) $\pi/4$, $5\pi/4$ d) $3\pi/4$, $5\pi/4$
- 5. If $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, then the angle between \vec{a} and \vec{b} is

a)
$$\pi$$
 b) $\pi/2$ c) $\pi/4$ d) $\pi/3$

6. The eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with a < b is

a)
$$\sqrt{1-\frac{b^2}{a^2}}$$
 b) $\sqrt{\frac{b^2}{a^2}-1}$ c) $\sqrt{1-\frac{a^2}{b^2}}$ d) $\sqrt{\frac{a^2}{b^2}-1}$

7. In a binomial distribution, if n = 8 and p = 1/3, then the variance is a) 8/3 b) 48/3 c) 64/3 d) 16/9

- 8. The points on the curve $x^2 + y^2 2x 3 = 0$, where the tangents are parallel to the *x*-axis are
- a) (-1, 2), (1, 2)b) (-1, 3), (1, 3)c) (1, 2), (1, -2)d) (1, 3), (1, -3)9. The I.F. for differential equation $\frac{dy}{dx} + Py = Q$ is a) $e^{\int Q \, dx}$ b) $e^{\int P \, dx}$ c) $e^{-\int P \, dx}$ d) $e^{\int Q \, dy}$
- 10. You have a system of three linear equations with three unknowns. If you perform Gaussian elimination and obtain the row-reduced

echelon form
$$\begin{pmatrix} 1 & -2 & 4 & | & 6 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
, then the system has

a) a unique solution b) no solution

c) infinitely many solutions d) finite number of solutions

11. Forces of magnitudes 1 N, 2 N, 3 N and 4 N are acting along sides *AB*, *CB*, *DC* and *DA* of a rectangle respectively. The magnitude of resultant is

a) 7.21 N b) 4 N c) 6 N d) 0N

OR

Given the national income model Y = E; E = C + I, where

C = 280 + 0.6Y and I = 80, the values of the intercept and slope of the expenditure equation are

GROUP B

a) 360, 0.6 b) 280, 0.4 c) 280, 0.6 d) 360, 0.4

$[8 \times 5 = 40]$

12. a) State De Moivre's theorem. Using it, find cube roots of - 27
b) If the roots of (c²+d²)x² - 2(ac+bd)x + (a²+b²) =0 are equal, prove that bc - ad = 0.

[3+2]

13. a) Using mathematical induction, prove that $2 + 2^2 + \ldots + 2^n = 2 (2^n - 1).$

b) Solve the system x + 2y + 3z = 6, 2x + 4y + z = 7 and 3x + 2y + 9z = 14 by the inverse matrix method.

[2+3]

- 14. a) Find the value of $\cot^{-1} 3 + \csc^{-1} \sqrt{5}$.
 - b) Determine the equation of the hyperbola in the standard position with focus at (-7, 0) and eccentricity 7/4.

[3+2]

15. a) For the observations of the variables *X* and *Y*, the following results are obtained:

 $\Sigma X = 36$, $\Sigma Y = 48$, $\Sigma XY = 225$, $\Sigma Y^2 = 340$, n = 5.

Find the equation of the regression line of *X* on *Y*.

b) A dice is thrown 3 times. Getting a 2 or 3 is regarded as a success. Find the probabilities of getting two successes.

[3+2]

16. Compute the integrals

a)
$$\int \frac{dx}{a+b\cos x} (|a| < |b| < 0)$$

b) $\int \frac{dx}{(x+1)(x+2)(x+3)}$.
[3+2]

17. State Bernoulli's equation. Solve the differential equation

$$\frac{dy}{dx} + \sin 2y \frac{1}{x} = x^3 \cos^2 y.$$
 [1+4]

18. An experiment involves placing the males and females of a laboratory animal species in two separate controlled environments. There is a limited time available in these environments, and the experiment or wishes to maximizes the number of animals subject to the constraints described

	Males	Females	Time available
Environment A	20 min	25 min	800 min
Environment B	20 min	15 min	600 min

- a) Formulate the given problem mathematically.
- b) How many males and females will maximize the total number of animals? Solve the problem by Simplex Method.

[1+4]

- 19. a) Two men have to remove a stone of weight 180 kg wt. with a light plank of length 1.5 m. If the stronger of them is able to carry 120 kg-wt, how the stone must be placed so as to allow him that share of the weight.
 - b) A shot is seen to pass horizontally just over a vertical wall 19.6 m high and 39.2 m off. Find the direction and magnitude of the velocity with which the shot left the gun. $(g = 9.8 \text{ m/s}^2)$

[2+3]

OR

- a) Given the demand function $p_d = 300 x$ and the supply function $p_s = x + 100$, where *x* is the number of units, find the consumer's as well as producer's surplus.
- b) Solve the difference equation $y_t = 0.2y_{t-1} + 0.8t + 5$. Is the general solution stable or unstable?

[3+2]

GROUP C $[3 \times 8 = 24]$

20. a) A committee of 15 is to be committed, choosing at least 5 from group A and at least 7 from group B. If there are 10 persons in each of these groups, in how many ways can the forms be constituted?

b) If
$$y = \frac{x}{1!} - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \dots$$
, show that
 $x = y + \frac{y^2}{2} + \frac{y^3}{3} + \frac{y^4}{4} + \dots$

c) Given the algebraic structure (G,*) with $G = \{1, \omega, \omega^2\}$ where ω represents an imaginary cube root of unity and * stands for the binary operation of multiplication, show that (G,*) is a group.

[3+2+3]

- 21. a) Prove that a line which makes angle *x*, *y*, *z*, *t* with four diagonals of a cube is $\cos^2 x + \cos^2 y + \cos^2 z + \cos^2 t = \frac{4}{3}$.
 - b) Define the vector product of two vectors and interpret it geometrically. Find the area of the parallelogram determined by the vectors $\vec{i} + 2\vec{j} + 3\vec{k}$ and $-3\vec{i} 2\vec{j} + \vec{k}$. [5+3]

22. a) Let
$$f(x) = \ln \tan x$$
. Find $\frac{d}{dx} f(x)$ from first principle.

- b) Find the derivative of $x^{\cosh x}$.
- c) State L'Hospital's Rule. Use it to find the value of

$$\lim_{x\to 0}\frac{e^x-e^{-x}-2\cos x}{\sin^2 x}.$$

[4+2+2]

