HISSAN CENTRAL EXAMINATION - 2079 (2022)

Grade: XII
F.M.: 75

Time : 3 hrs

COM. MATHEMATICS (0081 A)

Candidates are required to give their answers in their own words as far as practicable.
Attempt ALL Questions.

GROUP A

$[11 \times 1=11]$
Rewrite the correct option in your answer sheet.

1. The number $(-1)^{1 / 3}$ is not equal to
a) -1
b) $(-\sqrt{3}+i) /(2 i)$
c) $(\sqrt{3}+i) /(2 i)$
d) $(\sqrt{3}-i) /(2 i)$
2. If the one root of the equation $4 x^{2}-2 x+p-4=0$ is the reciprocal of other, then the value of p is
a) 8
b) -8
c) -4
d) 4
3. The general value of q satisfying the equation $2 \sin ^{2} q-3 \sin q-2=0$, is
a) $n \pi+(-1)^{n} \pi / 6$
b) $n \pi+(-1)^{n} \pi / 3$
c) $n \pi+(-1)^{n} 5 \pi / 6$
d) $n \pi+(-1)^{n} 7 \pi / 6$
4. The solution of the trigonometric equation $\tan x+1=2$ on the interval $[0,2 \pi)$ is
a) $0, \pi$
b) $3 \pi / 4,7 \pi / 4$
c) $\pi / 4,5 \pi / 4$
d) $3 \pi / 4,5 \pi / 4$
5. If $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then the angle between \vec{a} and \vec{b} is
a) π
b) $\pi / 2$
c) $\pi / 4$
d) $\pi / 3$
6. The eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with $a<b$ is
a) $\sqrt{1-\frac{b^{2}}{a^{2}}}$
b) $\sqrt{\frac{b^{2}}{a^{2}}-1}$
c) $\sqrt{1-\frac{a^{2}}{b^{2}}}$
d) $\sqrt{\frac{a^{2}}{b^{2}}-1}$.
7. In a binomial distribution, if $n=8$ and $p=1 / 3$, then the variance is
a) $8 / 3$
b) $48 / 3$
c) $64 / 3$
d) $16 / 9$
8. The points on the curve $x^{2}+y^{2}-2 x-3=0$, where the tangents are parallel to the x-axis are
a) $(-1,2),(1,2)$
b) $(-1,3),(1,3)$
c) $(1,2),(1,-2)$
d) $(1,3),(1,-3)$
9. The I.F. for differential equation $\frac{d y}{d x}+P y=Q$ is
a) $e^{\int Q d x}$
b) $e^{\int P d x}$
c) $e^{-\int P d x}$
d) $e^{\int Q d y}$
10. You have a system of three linear equations with three unknowns. If you perform Gaussian elimination and obtain the row-reduced echelon form $\left(\begin{array}{ccc|c}1 & -2 & 4 & 6 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0\end{array}\right)$, then the system has
a) a unique solution
b) no solution
c) infinitely many solutions
d) finite number of solutions
11. Forces of magnitudes $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N are acting along sides $A B, C B, D C$ and $D A$ of a rectangle respectively. The magnitude of resultant is
a) 7.21 N
b) 4 N
c) 6 N
d) 0 N

OR

Given the national income model $Y=E ; E=C+I$, where $C=280+0.6 Y$ and $I=80$, the values of the intercept and slope of the expenditure equation are
a) $360,0.6$
b) $280,0.4$
c) $280,0.6$
d) $360,0.4$

GROUP B

$$
[8 \times 5=40]
$$

12. a) State De Moivre's theorem. Using it, find cube roots of -27
b) If the roots of $\left(c^{2}+d^{2}\right) x^{2}-2(a c+b d) x+\left(a^{2}+b^{2}\right)=0$ are equal, prove that $b c-a d=0$.
13. a) Using mathematical induction, prove that

$$
2+2^{2}+\ldots+2^{n}=2\left(2^{n}-1\right)
$$

b) Solve the system $x+2 y+3 z=6,2 x+4 y+z=7$ and $3 x+2 y+$ $9 z=14$ by the inverse matrix method.
14. a) Find the value of $\cot ^{-1} 3+\operatorname{cosec}^{-1} \sqrt{5}$.
b) Determine the equation of the hyperbola in the standard position with focus at $(-7,0)$ and eccentricity $7 / 4$.
15. a) For the observations of the variables X and Y, the following results are obtained:

$$
\Sigma X=36, \quad \Sigma Y=48, \quad \Sigma X Y=225, \quad \Sigma Y^{2}=340, \quad n=5 .
$$

Find the equation of the regression line of X on Y.
b) A dice is thrown 3 times. Getting a 2 or 3 is regarded as a success. Find the probabilities of getting two successes.
16. Compute the integrals
a) $\int \frac{d x}{a+b \cos x}(|a|<|b|<0)$
b) $\int \frac{d x}{(x+1)(x+2)(x+3)}$.
17. State Bernoulli's equation. Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+\sin 2 y \frac{1}{x}=x^{3} \cos ^{2} y \tag{1+4}
\end{equation*}
$$

18. An experiment involves placing the males and females of a laboratory animal species in two separate controlled environments. There is a limited time available in these environments, and the experiment or wishes to maximizes the number of animals subject to the constraints described

	Males	Females	Time available
Environment A	20 min	25 min	800 min
Environment B	20 min	15 min	600 min

a) Formulate the given problem mathematically.
b) How many males and females will maximize the total number of animals? Solve the problem by Simplex Method.
19. a) Two men have to remove a stone of weight 180 kg wt. with a light plank of length 1.5 m . If the stronger of them is able to carry 120 kg -wt, how the stone must be placed so as to allow him that share of the weight.
b) A shot is seen to pass horizontally just over a vertical wall 19.6 m high and 39.2 m off. Find the direction and magnitude of the velocity with which the shot left the gun. $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

OR

a) Given the demand function $p_{d}=300-x$ and the supply function $p_{s}=x+100$, where x is the number of units, find the consumer's as well as producer's surplus.
b) Solve the difference equation $y_{t}=0.2 y_{t-1}+0.8 t+5$. Is the general solution stable or unstable?

GROUP C $\quad[\mathbf{3} \times \mathbf{8}=\mathbf{2 4}]$

20. a) A committee of 15 is to be committed, choosing at least 5 from group A and at least 7 from group B. If there are 10 persons in each of these groups, in how many ways can the forms be constituted?
b) If $y=\frac{x}{1!}-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\ldots$, show that

$$
x=y+\frac{y^{2}}{2}+\frac{y^{3}}{3}+\frac{y^{4}}{4}+\ldots
$$

c) Given the algebraic structure $(G, *)$ with $G=\left\{1, \omega, \omega^{2}\right\}$ where ω represents an imaginary cube root of unity and $*$ stands for the binary operation of multiplication, show that $(G, *)$ is a group.

$$
[3+2+3]
$$

21. a) Prove that a line which makes angle x, y, z, t with four diagonals of a cube is $\cos ^{2} x+\cos ^{2} y+\cos ^{2} z+\cos ^{2} t=\frac{4}{3}$.
b) Define the vector product of two vectors and interpret it geometrically. Find the area of the parallelogram determined
by the vectors $\vec{i}+2 \vec{j}+3 \vec{k}$ and $-3 \vec{i}-2 \vec{j}+\vec{k}$.

$$
[5+3]
$$

22. a) Let $f(x)=\ln \tan x$. Find $\frac{d}{d x} f(x)$ from first principle.
b) Find the derivative of $x^{\cosh x}$.
c) State L'Hospital's Rule. Use it to find the value of

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 \cos x}{\sin ^{2} x}
$$

$$
[4+2+2]
$$

THE END

